STEM

 STEM

STEM refers to  SCIENCE TECHNOLOGY ENGINEERING MATHEMATICS

SCIENCE  refers

 C V RAMAN A GREAT INDIAN SCIENTISTto  a branch of knowledge or study dealing with body of facts or truths

 systematically arranged and  showing the operation of general laws: the

 mathematical sciences.

TECHNOLOGY refers  to

the application of scientific knowledge for practical purposes, especially in industry

ENGINEERING refers to 

the branch of science and technology concerned with the design, building, and use of engines, machines, and structures.

MATHEMATICS  refers to

includes the study of such topics as quantity, structure, space, and change.Mathematicians seek and use patterns to formulate new conjectures; they resolve the truth or falsity of conjectures by mathematical proof.

From Algebra, Arithmetic, Calculus, Geometry, Trigonometry, Logic…to Statistics they are all diversified topics within Maths dealing with measurement or prediction of quantitative values. … Mathematics is the study of structure. It is the study of the interrelations between objects of one sort or another.

As a result, he has been hailed as the first true mathematician and the first known individual to whom a mathematical discovery has been attributed. Pythagorasestablished the Pythagorean School, whose doctrine it was that mathematics ruled the universe and whose motto was “All is number”.

 

Rocket

Rockets  are  transports which  are  send  to  space.They are  send  to  research  to   prove  that  will  something  intresting  they  capture  photos  of  space  .  They  give  us  information   about   other  planets, stars,comets  and  milky way.  They  are  made  by  man  .   They  give   us signal   for  telivision   and   mobile  phones . Scientists  will   launch  rockets . Astronaut  will  travel  space  by  rockets.

lawrencium

Lawrencium,  103Lr
General properties
Pronunciation /ləˈrɛnsiəm/ (About this soundlisten) ​(lə-REN-see-əm)
Appearance silvery (predicted)[1]
Mass number 266 (most stable isotope)
Lawrencium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Lu

Lr

(Ups)
nobelium ← lawrencium → rutherfordium
Atomic number (Z) 103
Group group n/a
Period period 7
Block f-block
Element category   actinide, sometimes considered a transition metal
Electron configuration [Rn] 5f14 7s2 7p1
Electrons per shell
2, 8, 18, 32, 32, 8, 3
Physical properties
Phase at STP solid (predicted)
Melting point 1900 K ​(1627 °C, ​2961 °F) (predicted)
Density (near r.t.) ~15.6–16.6 g/cm3(predicted)[2][3]
Atomic properties
Oxidation states +3
Electronegativity Pauling scale: 1.3 (predicted)[4]
Ionization energies
  • 1st: 478.6 kJ/mol[5]
  • 2nd: 1428.0 kJ/mol (predicted)
  • 3rd: 2219.1 kJ/mol (predicted)
Other properties
Crystal structure hexagonal close-packed (hcp)

Hexagonal close-packed crystal structure for lawrencium

(predicted)[6]

CAS Number 22537-19-5
History
Naming after Ernest Lawrence
Discovery Lawrence Berkeley National Laboratory and Joint Institute for Nuclear Research(1961–1971)
Main isotopes of lawrencium
Iso­tope Abun­dance Half-life(t1/2) Decay mode Pro­duct
266Lr syn 10 h SF
262Lr syn 3.6 h ε 262No
261Lr syn 44 min SF/ε?
260Lr syn 2.7 min α 256Md
259Lr syn 6.2 s 78% α 255Md
22% SF
256Lr syn 27 s α 252Md
255Lr syn 21.5 s α 251Md
254Lr syn 13 s 78% α 250Md
22% ε 254No

references

Lawrencium is a synthetic chemical element with symbol Lr (formerly Lw) and atomic number 103. It is named in honor of Ernest Lawrence, inventor of the cyclotron, a device that was used to discover many artificial radioactive elements. A radioactive metal, lawrencium is the eleventh transuranic element and is also the final member of the actinide series. Like all elements with atomic number over 100, lawrencium can only be produced in particle accelerators by bombarding lighter elements with charged particles. Twelve isotopes of lawrencium are currently known; the most stable is 266Lr with a half-life of 11 hours, but the shorter-lived 260Lr (half-life 2.7 minutes) is most commonly used in chemistry because it can be produced on a larger scale.

Chemistry experiments have confirmed that lawrencium behaves as a heavier homolog to lutetium in the periodic table, and is a trivalent element. It thus could also be classified as the first of the 7th-period transition metals: however, its electron configuration is anomalous for its position in the periodic table, having an s2p configuration instead of the s2d configuration of its homolog lutetium. This means that lawrencium may be more volatile than expected for its position in the periodic table and have a volatility comparable to that of lead.

In the 1950s, 1960s, and 1970s, many claims of the synthesis of lawrencium of varying quality were made from laboratories in the Soviet Union and the United States. The priority of the discovery and therefore the naming of the element was disputed between Soviet and American scientists, and while the International Union of Pure and Applied Chemistry (IUPAC) initially established lawrencium as the official name for the element and gave the American team credit for the discovery, this was reevaluated in 1997, giving both teams shared credit for the discovery but not changing the element’s name.

rutherfordium

Rutherfordium,  104Rf
General properties
Pronunciation /ˌrʌðərˈfɔːrdiəm/ (About this soundlisten) ​(RUDH-ər-FOR-dee-əm)
Mass number 267 (most stable isotope)
Rutherfordium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Hf

Rf

(Upo)
lawrencium ← rutherfordium → dubnium
Atomic number (Z) 104
Group group 4
Period period 7
Block d-block
Element category   transition metal
Electron configuration [Rn] 5f14 6d2 7s2[1][2]
Electrons per shell
2, 8, 18, 32, 32, 10, 2
Physical properties
Phase at STP solid (predicted)[1][2]
Melting point 2400 K ​(2100 °C, ​3800 °F) (predicted)[1][2]
Boiling point 5800 K ​(5500 °C, ​9900 °F) (predicted)[1][2]
Density (near r.t.) 23.2 g/cm3 (predicted)[1][2][3]
Atomic properties
Oxidation states (+2), (+3), +4[1][2][3](parenthesized: prediction)
Ionization energies
  • 1st: 580 kJ/mol
  • 2nd: 1390 kJ/mol
  • 3rd: 2300 kJ/mol
  • (more(all but first estimated)[2]
Atomic radius empirical: 150 pm(estimated)[2]
Covalent radius 157 pm (estimated)[1]
Other properties
Crystal structure hexagonal close-packed (hcp)

Hexagonal close-packed crystal structure for rutherfordium

(predicted)[4]

CAS Number 53850-36-5
History
Naming after Ernest Rutherford
Discovery Joint Institute for Nuclear Research and Lawrence Berkeley National Laboratory(1964, 1969)
Main isotopes of rutherfordium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
261Rf syn 70 s[5] >80% α 257No
<15% ε 261Lr
<10% SF
263Rf syn 15 min[5] <100% SF
~30% α 259No
265Rf syn 1.0 min[6][7][8] SF
266Rf syn 23 s? SF
267Rf syn 1.3 h[5] SF

references

Rutherfordium is a synthetic chemical element with symbol Rf and atomic number 104, named after physicist Ernest Rutherford. As a synthetic element, it is not found in nature and can only be created in a laboratory. It is radioactive; the most stable known isotope267Rf, has a half-life of approximately 1.3 hours.

In the periodic table of the elements, it is a d-block element and the second of the fourth-row transition elements. It is a member of the 7th period and belongs to the group 4 elements. Chemistry experiments have confirmed that rutherfordium behaves as the heavier homologue to hafnium in group 4. The chemical properties of rutherfordium are characterized only partly. They compare well with the chemistry of the other group 4 elements, even though some calculations had indicated that the element might show significantly different properties due to relativistic effects.

In the 1960s, small amounts of rutherfordium were produced in the Joint Institute for Nuclear Research in the former Soviet Unionand at Lawrence Berkeley National Laboratory in California.[9] The priority of the discovery and therefore the naming of the element was disputed between Soviet and American scientists, and it was not until 1997 that International Union of Pure and Applied Chemistry (IUPAC) established rutherfordium as the official name for the element

dubnium

Dubnium is a synthetic chemical element with symbol Db and atomic number 105. Dubnium is highly radioactive: the most stable known isotope, dubnium-268, has a half-life of about 28 hours. This greatly limits the extent of research on dubnium.

Dubnium does not occur naturally on Earth and is produced artificially. The Soviet Joint Institute for Nuclear Research (JINR) claimed the first discovery of the element in 1968, followed by the American Lawrence Berkeley Laboratory in 1970. Both teams proposed their names for the new element and used them without formal approval. The long-standing dispute was resolved in 1993 by an official investigation of the discovery claims by the IUPAC/IUPAP Joint Working Party, resulting in credit for the discovery being officially shared between both teams. The element was formally named dubnium in 1997 after the town of Dubna, the site of the JINR.

Theoretical research establishes dubnium as a member of group 5 in the 6d series of transition metals, placing it under vanadiumniobium, and tantalum. Dubnium should share most properties, such as its valence electron configuration and having a dominant +5 oxidation state, with the other group 5 elements, with a few anomalies due to relativistic effects. A limited investigation of dubnium chemistry has confirmed this. Solution chemistry experiments have revealed that dubnium often behaves more like niobium rather than tantalum, breaking periodic trends.

seaborgium

Seaborgium,  106Sg
General properties
Pronunciation /sˈbɔːrɡiəm/ (About this soundlisten) ​(see-BOR-gee-əm)
Mass number 269 (most stable isotope)
Seaborgium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
W

Sg

(Uhn)
dubnium ← seaborgium → bohrium
Atomic number (Z) 106
Group group 6
Period period 7
Block d-block
Element category   transition metal
Electron configuration [Rn] 5f14 6d4 7s2[1]
Electrons per shell
2, 8, 18, 32, 32, 12, 2
Physical properties
Phase at STP solid (predicted)[2]
Density (near r.t.) 35.0 g/cm3 (predicted)[1][3]
Atomic properties
Oxidation states 0, (+3), (+4), (+5), +6[1][3](parenthesized: prediction)
Ionization energies
  • 1st: 757 kJ/mol
  • 2nd: 1733 kJ/mol
  • 3rd: 2484 kJ/mol
  • (more(all but first estimated)[1]
Atomic radius empirical: 132 pm(predicted)[1]
Covalent radius 143 pm (estimated)[4]
Other properties
Crystal structure body-centered cubic (bcc)

Body-centered cubic crystal structure for seaborgium

(predicted)[2]

CAS Number 54038-81-2
History
Naming after Glenn T. Seaborg
Discovery Lawrence Berkeley National Laboratory (1974)
Main isotopes of seaborgium
Iso­tope Abun­dance Half-life(t1/2) Decay mode Pro­duct
271Sg syn 1.6 min 67% α 267Rf
33% SF
269Sg syn 3.1 min α 265Rf
267Sg syn 1.4 min 17% α 263Rf
83% SF
265mSg syn 16.2 s α 261mRf
265Sg syn 8.9 s α 261Rf

references

Seaborgium is a synthetic chemical element with symbol Sg and atomic number 106. It is named after the American nuclear chemist Glenn T. Seaborg. As a synthetic element, it can be created in a laboratory but is not found in nature. It is also radioactive; the most stable known isotope269Sg, has a half-life of approximately 3.1 minutes.

In the periodic table of the elements, it is a d-block transactinide element. It is a member of the 7th period and belongs to the group 6 elements as the fourth member of the 6d series of transition metals. Chemistry experiments have confirmed that seaborgium behaves as the heavier homologue to tungsten in group 6. The chemical properties of seaborgium are characterized only partly, but they compare well with the chemistry of the other group 6 elements.

In 1974, a few atoms of seaborgium were produced in laboratories in the Soviet Union and in the United States. The priority of the discovery and therefore the naming of the element was disputed between Soviet and American scientists, and it was not until 1997 that International Union of Pure and Applied Chemistry (IUPAC) established seaborgium as the official name for the element. It is one of only two elements named after a living person at the time of naming, the other being oganesson, element 118.

bohrium

Bohrium,  107Bh
General properties
Pronunciation /ˈbɔːriəm/ (About this soundlisten) ​(BOHR-ee-əm)
Mass number 270 (most stable isotope) (unconfirmed: 278)
Bohrium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Re

Bh

(Uhu)
seaborgium ← bohrium → hassium
Atomic number (Z) 107
Group group 7
Period period 7
Block d-block
Element category   transition metal
Electron configuration [Rn] 5f14 6d5 7s2[1][2]
Electrons per shell
2, 8, 18, 32, 32, 13, 2
Physical properties
Phase at STP solid (predicted)[3]
Density (near r.t.) 37.1 g/cm3 (predicted)[2][4]
Atomic properties
Oxidation states (+3), (+4), (+5), +7[2][4](parenthesized: prediction)
Ionization energies
  • 1st: 740 kJ/mol
  • 2nd: 1690 kJ/mol
  • 3rd: 2570 kJ/mol
  • (more(all but first estimated)[2]
Atomic radius empirical: 128 pm(predicted)[2]
Covalent radius 141 pm (estimated)[5]
Other properties
Crystal structure hexagonal close-packed (hcp)

Hexagonal close-packed crystal structure for bohrium

(predicted)[3]

CAS Number 54037-14-8
History
Naming after Niels Bohr
Discovery Gesellschaft für Schwerionenforschung (1981)
Main isotopes of bohrium
Iso­tope Abun­dance Half-life(t1/2) Decay mode Pro­duct
278Bh[6] syn 11.5 min? SF
274Bh syn 44 s[7] α 270Db
272Bh syn 11 s α 268Db
271Bh syn 1.5 s[8] α 267Db
270Bh syn 1 min α 266Db
267Bh syn 17 s α 263Db

references

Bohrium is a synthetic chemical element with symbol Bh and atomic number 107. It is named after Danish physicist Niels Bohr. As a synthetic element, it can be created in a laboratory but is not found in nature. It is radioactive: its most stable known isotope270Bh, has a half-life of approximately 61 seconds, though the unconfirmed 278Bh may have a longer half-life of about 690 seconds.

In the periodic table of the elements, it is a d-block transactinide element. It is a member of the 7th period and belongs to the group 7 elements as the fifth member of the 6d series of transition metals. Chemistry experiments have confirmed that bohrium behaves as the heavier homologue to rhenium in group 7. The chemical properties of bohrium are characterized only partly, but they compare well with the chemistry of the other group 7 elements.

hassium

Hassium,  108Hs
General properties
Pronunciation /ˈhæsiəm/ (About this soundlisten)[1] ​(HAS-ee-əm)
Appearance silvery (predicted)[2]
Mass number 270 (most stable isotope)
Hassium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Os

Hs

(Uhb)
bohrium ← hassium → meitnerium
Atomic number (Z) 108
Group group 8
Period period 7
Block d-block
Element category   transition metal
Electron configuration [Rn] 5f14 6d6 7s2[3]
Electrons per shell
2, 8, 18, 32, 32, 14, 2
Physical properties
Phase at STP solid (predicted)[4]
Density (near r.t.) 41 g/cm3 (predicted)[3]
Atomic properties
Oxidation states (+2), (+3), (+4), (+5), (+6), +8[2][3][5][6] (parenthesized: prediction)
Ionization energies
  • 1st: 730 kJ/mol
  • 2nd: 1760 kJ/mol
  • 3rd: 2830 kJ/mol
  • (more(all but first estimated)[3]
Atomic radius empirical: 126 pm(estimated)[3]
Covalent radius 134 pm (estimated)[7]
Other properties
Crystal structure hexagonal close-packed (hcp)

Hexagonal close-packed crystal structure for hassium

(predicted)[4]

CAS Number 54037-57-9
History
Naming after Hassia, Latin for Hesse, Germany, where it was discovered[2]
Discovery Gesellschaft für Schwerionenforschung (1984)
Main isotopes of hassium
Iso­tope Abun­dance Half-life(t1/2) Decay mode Pro­duct
271Hs syn 4 s α 267Sg
270Hs syn 10 s α 266Sg
269Hs syn 9.7 s α 265Sg

references

Hassium is a synthetic chemical element with symbol Hs and atomic number 108. It is named after the German state of Hesse. It is a synthetic element and radioactive; the most stable known isotope270Hs, has a half-life of approximately 10 seconds. More than 100 atoms of hassium have been synthesized to date.[2]

In the periodic table of the elements, it is a d-block transactinide element. Hassium is a member of the 7th period and belongs to the group 8 elements: it is thus the sixth member of the 6d series of transition metals. Chemistry experiments have confirmed that hassium behaves as the heavier homologue to osmium in group 8. The chemical properties of hassium are characterized only partly, but they compare well with the chemistry of the other group 8 elements. In bulk quantities, hassium is expected to be a silvery metal that reacts readily with oxygen in the air, forming a volatile tetroxide.

meitnerium

Meitnerium,  109Mt
General properties
Pronunciation
Mass number 278 (most stable isotope) (unconfirmed: 282)
Meitnerium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Ir

Mt

(Uht)
hassium ← meitnerium → darmstadtium
Atomic number (Z) 109
Group group 9
Period period 7
Block d-block
Element category   unknown chemical properties, but probably a transition metal[3][4]
Electron configuration [Rn] 5f14 6d7 7s2(calculated)[3][5]
Electrons per shell
2, 8, 18, 32, 32, 15, 2 (predicted)
Physical properties
Phase at STP solid (predicted)[4]
Density (near r.t.) 37.4 g/cm3 (predicted)[3]
Atomic properties
Oxidation states (+1), (+3), (+4), (+6), (+8), (+9) (predicted)[3][6][7][8]
Ionization energies
  • 1st: 800 kJ/mol
  • 2nd: 1820 kJ/mol
  • 3rd: 2900 kJ/mol
  • (more(all estimated)[3]
Atomic radius empirical: 128 pm(predicted)[3][8]
Covalent radius 129 pm (estimated)[9]
Other properties
Crystal structure face-centered cubic (fcc)

Face-centered cubic crystal structure for meitnerium

(predicted)[4]

Magnetic ordering paramagnetic (predicted)[10]
CAS Number 54038-01-6
History
Naming after Lise Meitner
Discovery Gesellschaft für Schwerionenforschung (1982)
Main isotopes of meitnerium
Iso­tope Abun­dance Half-life(t1/2) Decay mode Pro­duct
282Mt[11] syn 67 s? α 278Bh
278Mt syn 4 s α 274Bh
276Mt syn 0.6 s α 272Bh
274Mt syn 0.4 s α 270Bh

references

Meitnerium is a synthetic chemical element with symbol Mt and atomic number 109. It is an extremely radioactive synthetic element (an element not found in nature, but can be created in a laboratory). The most stable known isotope, meitnerium-278, has a half-life of 7.6 seconds, although the unconfirmed meitnerium-282 may have a longer half-life of 67 seconds. The GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany, first created this element in 1982. It is named after Lise Meitner.

In the periodic table, meitnerium is a d-block transactinide element. It is a member of the 7th period and is placed in the group 9 elements, although no chemical experiments have yet been carried out to confirm that it behaves as the heavier homologue to iridium in group 9 as the seventh member of the 6d series of transition metals. Meitnerium is calculated to have similar properties to its lighter homologues, cobaltrhodium, and iridium

darmstadtium

Darmstadtium,  110Ds
General properties
Pronunciation /dɑːrmˈʃtɑːtiəm/ (About this soundlisten)[1] ​(darm-SHTAH-tee-əm)
Mass number 281 (most stable isotope)
Darmstadtium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Pt

Ds

(Uhq)
meitnerium ← darmstadtium → roentgenium
Atomic number (Z) 110
Group group 10
Period period 7
Block d-block
Element category   unknown chemical properties, but probably a transition metal
Electron configuration [Rn] 5f14 6d8 7s2 (predicted)[2]
Electrons per shell
2, 8, 18, 32, 32, 16, 2 (predicted)[2]
Physical properties
Phase at STP solid (predicted)[3]
Density (near r.t.) 34.8 g/cm3 (predicted)[2]
Atomic properties
Oxidation states (0), (+2), (+4), (+6), (+8(predicted)[2][4]
Ionization energies
  • 1st: 960 kJ/mol
  • 2nd: 1890 kJ/mol
  • 3rd: 3030 kJ/mol
  • (more(all estimated)[2]
Atomic radius empirical: 132 pm(predicted)[2][4]
Covalent radius 128 pm (estimated)[5]
Other properties
Crystal structure body-centered cubic (bcc)

Body-centered cubic crystal structure for darmstadtium

(predicted)[3]

CAS Number 54083-77-1
History
Naming after Darmstadt, Germany, where it was discovered
Discovery Gesellschaft für Schwerionenforschung (1994)
Main isotopes of darmstadtium
Iso­tope Abun­dance Half-life(t1/2) Decay mode Pro­duct
281Ds syn 14 s 94% SF
6% α 277Hs
279Ds syn 0.2 s 10% α 275Hs
90% SF

references

Darmstadtium is a synthetic chemical element with symbol Ds and atomic number 110. It is an extremely radioactive synthetic element. The most stable known isotope, darmstadtium-281, has a half-life of approximately 10 seconds.[6] Darmstadtium was first created in 1994 by the GSI Helmholtz Centre for Heavy Ion Research near the city of Darmstadt, Germany, after which it was named.

In the periodic table, it is a d-block transactinide element. It is a member of the 7th period and is placed in the group 10 elements, although no chemical experiments have yet been carried out to confirm that it behaves as the heavier homologue to platinum in group 10 as the eighth member of the 6d series of transition metals. Darmstadtium is calculated to have similar properties to its lighter homologues, nickelpalladium, and platinum.